

HPFS[®] Standard Grade, Corning code 7980, is a high purity synthetic amorphous silicon dioxide manufactured by flame hydrolysis. The noncrystalline, colorless, silica glass combines a very low thermal expansion coefficient with excellent optical qualities and exceptional transmittance in the ultraviolet. It is available in a number of grades for different applications.

In order to satisfy the challenging quality requirements of our customers in leading edge applications such as microlithography, Corning is dedicated to continuous improvement. Our investments in research and development, combined with Corning's quality systems, support our technology leadership position and ensure that we meet our customer's requirements on time, every time.

Quality Grade Selection Chart — HPFS® Standard Grade

Corning defines and certifies the quality of HPFS® glass using two criteria: inclusions and homogeneity grade.

Inclusion Class		Homogeneity ^{3,4} ppm								
			Grade							
Class	Total Inclusion ¹ Cross Section [mm ²]	Maximum ² Size [mm]	$\begin{array}{c} AA \\ \leq 0.5 \end{array}$	A ≤ 1	B ≤ 1.5	C ≤ 2	D ≤ 3	E ≤ 4	F ≤ 5	G⁵ NS
0	≤ 0.03	0.10								
1	≤ 0.10	0.28								
2	≤ 0.25	0.50								
3	≤ 0.50	0.76								
4	≤ 1.00	1.00								
5	≤ 2.00	1.27								

NOTES:

- 1. Defines the sum of the cross section in mm^2 of inclusions per 100 cm³ of glass. Inclusions with a diameter ≤ 0.10 mm are disregarded.
- 2. Refers to the diameter of the largest single inclusion.
- 3. Index homogeneity: the maximum index variation (relative), measured over the clear aperture of the blank.
- 4. Index homogeneity is certified using an interferometer at 632.8 nm. The numerical homogeneity is reported as the average through the piece thickness. Blanks with a diameter up to 450 mm can be analyzed over the full aperture. Larger parts can be analyzed using multiple overlapping apertures. The minimum thickness for index homogeneity verification is 20 mm. For thinner parts, the parent piece is certified.
- 5. NS (not specified)

Mechanical and Thermal Properties:

Unless otherwise stated, all values @ 25°C

Elastic (Young's) Modulus	72.7 GPa	Softening Point	15	85 °C (10 ^{7.6} poises)
Shear Modulus	31.4 GPa	Annealing Point	10	042 °C (10 ¹³ poises)
Modulus of Rupture, abraded	52.4 MPa	Strain Point	89	93 °C (10 ^{14.5} poises)
Bulk Modulus	35.4 GPa	Thermal Conductivity		1.30 W/m K
Poisson's Ratio	0.16	Thermal Diffusivity		0.0075 cm ² /s
Density	2.201 g/cm ³	Average C.T.E.	0.52 ppm/K	5 °C-35 °C
Knoop Hardness (100 g load)	522 kg/mm ²		0.57 ppm/K	0 °C-200 °C
			0.48 ppm/K	−100 °C-200 °C

Chemical Durability and Impurities

Solution		Time	Weight Loss [mg/cm ²]	Impurities
5% HCL by weight	@95 °C	24 h	< 0.010	OH content (by weight): 800-1000 ppm
5% NaOH	@95 ℃	6 h	0.453	Impurities other than $OH: \le 1000 \text{ ppb}$
0.02N NA ₂ CO ₃	@95 °C	6 h	0.065	
0.02N H ₂ SO ₄	@95 °C	24 h	< 0.010	-
Deionized H ₂ O	@95 °C	24 h	0.015	-
10% HF by weight	@25 °C	20 m	0.230	
10% NH ₄ F [*] HF by weight	@25 °C	20 m	0.220	

Internal Transmittance

HPFS[®] Standard Grade is certified to meet T external \geq 80%/cm@185nm (T internal \geq 88%/cm@185nm), when measured through a polished, uncoated sample. A typical internal transmittance curve for HPFS[®] Standard Grade fused silica is shown here.

Refractive Index and Dispersion

Data in 22°C in 760mm Hg dry nitrogen gas

Wavelength	Refractive	Thermal	Polynomial Dispersio	n Equation Constants ^{*1}
[air]	Index *2	Coefficient		
λ [nm]	n	$\Delta n/\Delta T^{*3}$ (ppm/K)	A ₀ 2.104025406	6
			A ₁ -1.456000330	0 x 10 ⁻⁴
1128.64	1.448870	9.6	A ₂ -9.04913539	0 x 10 ⁻³
1064.00	1.449633	9.6	A ₃ 8.80183099	2 x 10 ⁻³
1060.00	1.449681	9.6	A ₄ 8.43523722	8 x 10 ⁻⁵
1013.98 n _t	1.450245	9.6	A ₅ 1.68165678	9 x 10 ⁻⁶
852.11 n _s	1.452469	9.7	A ₆ -1.67542544	9 x 10 ⁻⁸
706.52 n _r	1.455149	9.9	A ₇ 8.32660246	1 x 10 ⁻¹⁰
656.27 n _c	1.456370	9.9		
643.85 n _c	1.456707	10.0		
632.80 n _{He-Ne}	1.457021	10.0	Sellmeier Dispersion	Equation Constants *2
589.29 n _D	1.458406	10.1		
587.56 n _d	1.458467	10.1	B ₁ 0.683740494	400
546.07 n _e	1.460082	10.2	B ₂ 0.42032361	300
486.13 n _F	1.463132	10.4	B ₃ 0.58502748	000
479.99 n _F	1.463509	10.4	C ₁ 0.00460352	869
435.83 ng	1.466701	10.6	C ₂ 0.01339688	560
404.66 n _h	1.469628	10.8	C ₃ 64.49327320	000
365.01 n _i	1.474555	11.2		
334.15	1.479785	11.6		
312.57	1.484514	12.0	$\Delta n/\Delta T$ Dispersion Equ	uation Constants *3
308.00	1.485663	12.1		
248.30	1.508433	14.2	C ₀ 9.390590	
248.00	1.508601	14.2	C ₁ 0.235290	
214.44	1.533789	17.0	C ₂ -1.318560 x	10-3
206.20	1.542741	18.1	C ₃ 3.028870 x	10-4
194.17	1.559012	20.4	-	
193.40	1.560208	20.5		
193.00	1.560841	20.6	Other Optical Propert	ies
184.89	1.575131	22.7	* *	
			$V_{ m d}$	67.79
			V _e	67.64
			n _F -n _C	0.006763
			n _F ,-n _C ,	0.006802
			Stress Coefficient	35.0 nm/cm MPa
			Striae	ISO 10110-4 Class
				5/Thickness Direction
			Birefringence	≤ 1 nm/cm,
			5	lower specifications available

*1 Polynomial Equation: n² = A₀ + A₁ λ^4 + A₂ λ^2 + A₃ λ^2 + A₄ λ^4 + A₅ λ^{-6} + A₆ λ^{-8} + A₇ λ^{-10} with λ in μ m *2 Sellmeier Equation: n²-1 = B₁ $\lambda^2/(\lambda^2-C_1)$ + B₂ $\lambda^2/(\lambda^2-C_2)$ + B₃ $\lambda^2/(\lambda^2-C_3)$ with λ in μ m *3 Δ n/ Δ T Equation (20–25°C) = C₀ + C₁ λ^{-2} + C₂ λ^{-4} + C₃ λ^{-6} with λ in μ m

We are here to help you specify the best product for your application. For further information, please contact:

Worldwide Accessibility

United States/Canada Sales Office

Corning Incorporated Semiconductor Optics Business 334 County Route 16 Canton, NY 13617

t: 315.379.3600 f: 315.379.3317 e-mail: hpfs@corning.com

European Sales Office

Corning GmbH Corning International Abraham-Lincoln-Strasse 30 D-65189 Wiesbaden, Germany

t: 49.611.7366.100 f: 49.611.7366.143 e-mail: CIgermany@corning.com

Asia Sales Offices

Corning International K.K. No. 35 Kowa Building, 3F 14-14, Akasaka 1-chome Minato-Ku, Tokyo 107-0052 Japan

t: 81.3.3586.1052 f: 81.3.3587.0906

Corning International 1 Kim Seng Promenade #12-12 GreatWorld City West Tower Singapore 237994 Republic of Singapore

t: 65.733.6511 f: 65.861.7310 Corning Korea Company Ltd. 10th Floor, Kukje Center Bldg. 191, Hangangro 2-Ka Yongsan-Ku Seoul, Korea 140-702

t: 82.2.796.9500 f: 82.2.796.9300

Corning Glass Taiwan Co. Ltd. Room # 1023, 12F No. 205 Tun Hua North Road Taipei, Taiwan

t: 886.2.2716.0338 f: 886.2.2716.0339

Australia Sales Office

Corning International Australia Suite 18 12, Tryon Road Lindfield, NSW 2070 Australia

t: 61.2.9416.0492 f: 61.2.9416.0493

World Headquarters

Corning Incorporated One Riverfront Plaza Corning, New York 14831-0001

t: 607-974-9000

The information contained herein is based upon data considered to be accurate. However, no warranty is expressed or implied regarding the performance of this product. The only applicable warranties are those that are set out in a contract or purchase.

Corning Incorporated

One Riverfront Plaza Corning, NY 14831

607 974 9000

© Corning Incorporated 2003

HPFS[®] is a registered trademark of Corning Incorporated.

www.corning.com

September 30, 2003